Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccines (Basel) ; 11(4)2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2291115

ABSTRACT

This research paper examines the adoption of digital services for the vaccination during the COVID-19 pandemic in Germany. Based on a survey in Germany's federal state with the highest vaccination rate, which used digital vaccination services, its platform configuration and adoption barriers are analyzed to understand existing and future levers for optimizing vaccination success. Though technological adoption and resistance models have been originally developed for consumer-goods markets, this study gives empirical evidence especially for the applicability of an adjusted model explaining platform adoption for vaccination services and for digital health services in general. In this model, the configuration areas of personalization, communication, and data management have a remarkable effect to lower adoption barriers, but only functional and psychological factors affect the adoption intention. Above all, the usability barrier stands out with the strongest effect, while the often-cited value barrier is not significant at all. Personalization is found to be the most important factor for managing the usability barrier and thus for addressing the needs, preferences, situation, and, ultimately, the adoption of the citizens as users. Implications are given for policy makers and managers in such a pandemic crisis to focus on the click flow and server-to-human interaction rather than emphasizing value messages or touching traditional factors.

2.
2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022 ; : 494-500, 2022.
Article in English | Scopus | ID: covidwho-2217954

ABSTRACT

The antigen test kits or ATKs have been widely used for screening COVID-19 infections because they can detect and give the results quickly and can be done easily by untrained patients. However, reading ATK test results could be difficult for some people and may lead to misinterpretations of the test results. This paper presents a preliminary study for developing a mobile application for helping in reading the results of the COVID-19 ATKs from an image using algorithms based on the YOLO object detection. The results are classified into 3 classes, negative, positive, and invalid. The negative and the invalid results are further refined by using the distances between the visible line and the letters on the test cassette. Experiments were conducted to test the efficiency and accuracy of the developed model with a mean of average precision or mAP of 0.986 and an F1 score of 0.970. The model was developed and put into a prototype mobile application using tools that support cross-platform technology. © 2022 Asia-Pacific of Signal and Information Processing Association (APSIPA).

3.
Molecular Frontiers Journal ; 5(1n02), 2021.
Article in English | ProQuest Central | ID: covidwho-1752912

ABSTRACT

The rapid development of mRNA vaccines for COVID-19 has both astonished the world and raised concerns about their safety, perhaps because many people do not realize the decades’ long efforts for nucleic acid vaccines, both mRNA and DNA vaccines, including the licensure of several veterinary DNA vaccines. This manuscript traces the milestones for nucleic acid vaccine research and development (R&D), with a focus on the immune and safety issues they both raised and answered. The characteristics of the two entities are compared, demonstrating the similarities and differences between them, the advantages and disadvantages, which might lead toward using one or the other technology for different indications. In addition, as the SARS-CoV-2 pandemic has once again highlighted the importance of One Health, that is, the interactions between animal and human pathogens, focus will also be given to how DNA vaccine utilization and studies both in large domestic animals and in wildlife pave the way for more integrated approaches for vaccines to respond quickly to, and prevent, the global impacts of emerging diseases.

4.
Bioengineering (Basel) ; 8(11)2021 Oct 24.
Article in English | MEDLINE | ID: covidwho-1480570

ABSTRACT

Future infectious disease outbreaks are inevitable; therefore, it is critical that we maximize our readiness for these events by preparing effective public health policies and healthcare innovations. Although we do not know the nature of future pathogens, antigen-agnostic platforms have the potential to be broadly useful in the rapid response to an emerging infection-particularly in the case of vaccines. During the current COVID-19 pandemic, recent advances in mRNA engineering have proven paramount in the rapid design and production of effective vaccines. Comparatively, however, the development of new adjuvants capable of enhancing vaccine efficacy has been lagging. Despite massive improvements in our understanding of immunology, fewer than ten adjuvants have been approved for human use in the century since the discovery of the first adjuvant. Modern adjuvants can improve vaccines against future pathogens by reducing cost, improving antigen immunogenicity, and increasing antigen stability. In this perspective, we survey the current state of adjuvant use, highlight potentially impactful preclinical adjuvants, and propose new measures to accelerate adjuvant safety testing and technology sharing to enable the use of "off-the-shelf" adjuvant platforms for rapid vaccine testing and deployment in the face of future pandemics.

5.
Biologicals ; 71: 55-60, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1220733

ABSTRACT

The International Alliance for Biological Standardization and the Coalition for Epidemic Preparedness Innovations organized a joint webinar on the use of platform technologies for vaccine development. To tackle new emerging infectious diseases, including SARS-CoV-2, rapid response platforms, using the same basic components as a backbone, yet adaptable for use against different pathogens by inserting new genetic or protein sequences, are essential. Furthermore, it is evident that development of platform technologies needs to continue, due to the emerging variants of SARS-CoV-2. The objective of the meeting was to discuss techniques for platform manufacturing that have been used for COVID-19 vaccine development, with input from regulatory authorities on their experiences with, and expectations of, the platforms. Industry and regulators have been very successful in cooperating, having completed the whole process from development to licensing at an unprecedented speed. However, we should learn from the experiences, to be able to be even faster when a next pandemic of disease X occurs.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Drug Development , SARS-CoV-2/immunology , COVID-19 Vaccines/therapeutic use , Congresses as Topic , Humans
6.
J Adv Manuf Process ; 2(3): e10060, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-631864

ABSTRACT

Overcoming pandemics, such as the current Covid-19 outbreak, requires the manufacture of several billion doses of vaccines within months. This is an extremely challenging task given the constraints in small-scale manufacturing for clinical trials, clinical testing timelines involving multiple phases and large-scale drug substance and drug product manufacturing. To tackle these challenges, regulatory processes are fast-tracked, and rapid-response manufacturing platform technologies are used. Here, we evaluate the current progress, challenges ahead and potential solutions for providing vaccines for pandemic response at an unprecedented scale and rate. Emerging rapid-response vaccine platform technologies, especially RNA platforms, offer a high productivity estimated at over 1 billion doses per year with a small manufacturing footprint and low capital cost facilities. The self-amplifying RNA (saRNA) drug product cost is estimated at below 1 USD/dose. These manufacturing processes and facilities can be decentralized to facilitate production, distribution, but also raw material supply. The RNA platform technology can be complemented by an a priori Quality by Design analysis aided by computational modeling in order to assure product quality and further speed up the regulatory approval processes when these platforms are used for epidemic or pandemic response in the future.

7.
J Clin Exp Hepatol ; 10(6): 610-621, 2020.
Article in English | MEDLINE | ID: covidwho-592337

ABSTRACT

The coronavirus disease 2019 (COVID-19) has turned into a global human tragedy and economic devastation. Governments have implemented lockdown measures, blocked international travel, and enforced other public containment measures to mitigate the virus morbidity and mortality. As of today, no drug has the power to fight the infection and bring normalcy to the utter chaos. This leaves us with only one choice namely an effective and safe vaccine that shall be manufactured as soon as possible and available to all countries and populations affected by the pandemic at an affordable price. There has been an unprecedented fast track path taken in Research & Development by the World community for developing an effective and safe vaccine. Platform technology has been exploited to develop candidate vaccines in a matter of days to weeks, and as of now, 108 such vaccines are available. Six of these vaccines have entered clinical trials. As clinical trials are "rate-limiting" and "time-consuming", many innovative methods are in practice for a fast track. These include parallel phase I-II trials and obtaining efficacy data from phase IIb trials. Human "challenge experiments" to confirm efficacy in humans is under serious consideration. The availability of the COVID-19 vaccine has become a race against time in the middle of death and devastation. There is an atmosphere of tremendous hype around the COVID-19 vaccine, and developers are using every moment to make claims, which remain unverified. However, concerns are raised about a rush to deploy a COVID-19 vaccine. Applying "Quick fix" and "short cuts" can lead to errors with disastrous consequences.

SELECTION OF CITATIONS
SEARCH DETAIL